Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Noro Psikiyatr Ars ; 61(1): 11-14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496222

RESUMEN

Introduction: Metabolic dysfunctions are critical in the pathology of Alzheimer's disease. Impaired zinc homeostasis, in particular, is a significant issue in this disease that has yet to be explained. Gene expression of ZIP14 in brain tissue has been previously reported. But to date, only one study has reported reduced ZIP14 levels in aged brain tissue. We investigated how dietary zinc deprivation and supplementation impact ZIP14 levels in the cerebral cortex in rats with sporadic Alzheimer's disease (sAH) produced by intracerebroventricular streptozotocin (icv-STZ). Impaired zinc homeostasis, in particular, is a significant issue with this condition that has yet to be elucidated. Methods: Animals were divided into 5 groups in equal numbers (n=8): Sham 1 group: icv received artificial cerebrospinal fluid (aCSF); Sham 2 group: retrieved icv aCSF and intraperitoneal (ip) saline, STZ group: received 3 mg/kg icv-STZ; STZ-Zn-Deficient group: received 3 mg/kg icv-STZ and fed a zinc-deprived diet; STZ-Zn-Supplemented: It received 3 mg/kg icv-STZ and ip zinc sulfate (5 mg/kg/day ZIP 14 levels (ng/L) in cortex tissue samples taken from animals sacrificed under general anesthesia were determined by ELISA at the final stage of the experimental applications. Results: Decreased ZIP14 levels in the sporadic Alzheimer's group were severely by zinc deficiency. Zinc supplementation treated the reduction in ZIP14 levels. Conclusion: The results of the current study show that ZIP14 levels in cerebral cortex tissue, which are suppressed in the experimental rat Alzheimer model and are even more critically reduced in zinc deficiency, can be restored by zinc supplementation.

2.
Neuromolecular Med ; 26(1): 4, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457013

RESUMEN

BACKGROUND: Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae; thus, it has recently attracted a lot of attention in the field of medical study. PURPOSE: The aim of this study was to determine the effect of naringin supplementation on neurogenesis and brain-derived neurotrophic factor (BDNF) levels in the brain in experimental brain ischemia-reperfusion. STUDY DESIGN: The research was carried out on 40 male Wistar-type rats (10-12 weeks old) obtained from the Experimental Animals Research and Application Center of Selçuk University. Experimental groups were as follows: (1) Control group, (2) Sham group, (3) Brain ischemia-reperfusion group, (4) Brain ischemia-reperfusion + vehicle group (administered for 14 days), and (5) Brain ischemia-reperfusion + Naringin group (100 mg/kg/day administered for 14 days). METHODS: In the ischemia-reperfusion groups, global ischemia was performed in the brain by ligation of the right and left carotid arteries for 30 min. Naringin was administered to experimental animals by intragastric route for 14 days following reperfusion. The training phase of the rotarod test was started 4 days before ischemia-reperfusion, and the test phase together with neurological scoring was performed the day before and 1, 7, and 14 days after the operation. At the end of the experiment, animals were sacrificed, and then hippocampus and frontal cortex tissues were taken from the brain. Double cortin marker (DCX), neuronal nuclear antigen marker (NeuN), and BDNF were evaluated in hippocampus and frontal cortex tissues by Real-Time qPCR analysis and immunohistochemistry methods. RESULTS: While ischemia-reperfusion increased the neurological score values, DCX, NeuN, and BDNF levels decreased significantly after ischemia in the hippocampus and frontal cortex tissues. However, naringin supplementation restored the deterioration to a certain extent. CONCLUSION: The results of the study show that 2 weeks of naringin supplementation may have protective effects on impaired neurogenesis and BDNF levels after brain ischemia and reperfusion in rats.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Flavanonas , Humanos , Ratas , Masculino , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Ratas Wistar , Isquemia Encefálica/tratamiento farmacológico , Reperfusión , Neurogénesis , Isquemia , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA